If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+16t+60=0
a = -16; b = 16; c = +60;
Δ = b2-4ac
Δ = 162-4·(-16)·60
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-64}{2*-16}=\frac{-80}{-32} =2+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+64}{2*-16}=\frac{48}{-32} =-1+1/2 $
| 1+4r=1-7r | | k=22+29 | | 16t^2+16t+60=0 | | 9m-28=2m+16 | | -4(x+2)-1/2(2x-6)= | | 5x-7=3x+15;{3,7,11} | | -7/y+5=-3 | | -8x-4+4=4+4 | | 1/3(9-6m)+(3m-8)= | | 4x-4=-x+5 | | 15-8x+3x=x-3 | | 12+x=12+3x | | 12y+3-yy=1 | | 3p^2+9p=0 | | 4x^2+2x-9=9 | | 17x-42=2x-7x | | (x+7)^2=121 | | x+8/14=9/7+x-3/8 | | -54=6(x-6 | | 45=9-3h | | 0.1(x=250)=5000 | | (1/64)^x+2=8^2x | | (6x-9)(6x+9)=0 | | 6y-7=15y+11 | | 36=4(x+9 | | 4.7x=2.5x=8.8 | | 4x-1=-2(x+1) | | 4x+(-x)+2=-2x+12 | | 7x^2+3-x-40=2x^2-15x+70 | | 6y=3.6 | | -7v-5=2v^2 | | 12/42=2/x |